
Integrating Type Operators into the FreeST
Programming Language

Paula Lopes , Diana Costa , and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. Context-free session types emerged from the need to expand
session type theory to non-regular protocols. Their inclusion in type
systems enhances the expressiveness and adaptability of communication
protocols in programming languages, yet pose a significant challenge for
type equivalence algorithms. In this work, we study System Fµ∗;

ω , the
higher-order polymorphic lambda calculus equipped with equirecursive
and context-free session types, as well as its seamless integration into
FreeST, a functional programming language governed by context-free ses-
sion types. We follow a bisimulation-based approach to type equivalence,
translating types into simple grammars and verifying the bisimilarity of
these grammars, a problem that is decidable.

Keywords: Higher-order Kinds · Context-Free Session Types · Session
Polymorphism · Type Equivalence · Simple Grammar.

1 Introduction

In the field of programming languages, the drive for more advanced and expres-
sive type systems never stops. This journey has led us from the foundational
System F [9] to the more intricate System Fµ

ω [4]. Integrating these advanced sys-
tems into real-world programming languages, however, comes with its own set
of challenges, especially when it comes to type equivalence.

FreeST [1], a concurrent functional programming language based on system
Fµ;, is regulated by context-free session types. Context-free session types, unlike
regular session types, are not restricted to tail recursion, thus allowing the de-
scription of more sophisticated communication protocols. FreeST’s current type
equivalence algorithm, developed by Almeida et al. [2] decides the equivalence of
context-free session types by reducing the problem to the bisimilarity of simple
grammars. The next step is to extend the language to a higher-order setting
where type equivalence is still decidable.

In this work, we study the System Fµ∗;
ω , the higher-order polymorphic lambda

calculus equipped with equirecursive and context-free session types and its in-
corporation into a programming language. We follow a bisimulation-based type
equivalence, proposed by Poças et al. [8], which supports the robust implementa-
tion of advanced type systems in programming languages. We seek to bridge the
gap between advanced type theory and practical compiler design, ensuring that

http://orcid.org/0009-0009-3839-3974
http://orcid.org/0000-0002-8312-429X
http://orcid.org/0000-0002-9539-8861

2 P. Lopes et al.

the powerful capabilities of context-free session types can be effectively utilized
without compromising on performance or reliability.

In the development of modern type systems, combining advanced features
such as equirecursion, higher-order polymorphism, and higher-order context-free
session types presents unique challenges and opportunities. The primary moti-
vation for our research is to integrate these elements into a cohesive type system
that can be practically incorporated into programming languages. Therefore,
we are interested in practical algorithms for type equivalence checking to be
incorporated into compilers.

Context-free session types break free from tail recursion by introducing the
sequential composition operator ; and the type Skip—neutral element of sequen-
tial composition—which represents a protocol with no actions. The recursive
type µα : s.&{Leaf : Skip,Node : α; ?Int; α};End? describes a protocol for safely
streaming integer trees on a channel. The channel presents an external choice &
with two labels: if the continuation of the channel is Leaf, then no communication
occurs but the channel is still open for further composition whereas, if the contin-
uation of the channel is Node, then we have a left subtree, followed by an integer
and a right subtree. When the whole tree is received, the channel is closed. It
is also important to distinguish type End? from Skip—the former represents the
closure of a channel, where no further communication is possible, while the lat-
ter allows continuing the communication. We want to move beyond context-free
session types, namely, we are interested in abstracting the type that is received
on the tree channel, by writing λβ : t.µ α : s.&{Leaf : Skip,Node : α; ?β; α};Wait.
Abstractions introduce higher-order kinds which lead to the introduction of type
operators into our language.

Duality is the relationship between two session types that allows them to
correctly engage in a protocol. For any session type describing one side of the
communication (let us say the client), there is a dual session type that describes
the other side (the server). For example, the session type !Int describes sending an
integer and its dual session type is to receive an integer, ?Int. Typically, duality
is offered as a built in constructor [6]. However, we believe duality should be
internal, by means of a type operator, since in a polymorphic setting duality
cannot be eliminated without the introduction of co-variables.

The rest of the paper is organised as follows: Section 2 introduces System
Fµ∗;
ω and type equivalence; Section 3 presents the challenges encountered during

this research and prove the decidability of type formation; Section 4 explains the
decidability of type equivalence; Section 5 describes our implementation process
and validates our work and Section 6 wraps up the paper.

2 System F µ∗;
ω

In programming languages, terms are categorized by types, which in turn may
be categorized by kinds. In our system, a kind κ is either a base kind ∗—which
is either a session or a functional kind, s or t, respectively—or a higher-order
kind κ ⇒ κ′. A proper type refers to a type that has a base kind. In contrast,

Integrating Type Operators into the FreeST Programming Language 3

T ::= Type

ι type constructor λα : κ.T type-level abstraction

α type variable T T type-level application

ι ::= Type constructor

→ ∗ ⇒ ∗ ⇒ t arrow LliM ∗ ⇒t record/variant

µκ (κ ⇒ κ) ⇒ κ recursive type ♯ ∗ ⇒ s input/output

; s ⇒ s ⇒ s seq.composition ⊙{li} s ⇒ s internal/external choice

∃∀κ (κ ⇒ ∗) ⇒ t exists/forall Dual s ⇒ s dual operator

End♯ s wait/close Skip s skip

LM ::= {} | ⟨⟩ ♯ ::= ? | ! ⊙ ::= ⊕ | & ∃∀κ ::= ∃κ | ∀κ

Fig. 1. The syntax of types and constructors.

type operators act upon types to create more complex types, and are associated
with higher-order kinds. For example, the type operator → takes two types, T
and U , and constructs a new type, a function type →TU , which we sometimes
write in infix notation as T → U . This is the core of our work. Our goal is to
expand the programming language FreeST, currently limited to types of kind ∗,
to higher-order kinds.

A type is either a type constructor ι, a type variable α, an abstraction
λα : κ.T or an application T T . A detailed list of types and constructors is in
Fig. 1. Observe that µα : κ. T is syntactic sugar for µκ(λα : κ.T) and similarly
for ∃∀α : κ. T .

Not all types are of interest—for example Dual∀sλα : s.α since the dual op-
erator makes no sense being applied to a functional type. Before we can discuss
type formation, we must define the weak head normal form of a type; we do so
by defining a system of reduction rules in Fig. 2. This system is that of Poças
et al. [8] made confluent by adding the proviso that T ̸= T1; T2 to rules R-Seq2

and R-DCtx. Confluence states that, if there are two distinct reductions for a
given type, T → U and T → V , then both paths will eventually converge into
the same final reduced type W . Our variant features a single reduction path,
thus confluence immediately follows.

A type is in normal form, denoted T whnf, if it has been completely re-
duced, i.e., no further reductions are possible. In other words, T whnf iff T ↛.
Then we can say that type T normalises to type U , written T ⇓ U , if U whnf
and U is reached from T in a finite number of reduction steps. The predicate
T norm means that T ⇓ U for some U . Note that not all types normalise, i.e.,
some have an infinite sequence of reductions, such as T = (λx.xx)(λx.xx) −→
(λx.xx)[(λx.xx)/x] = T −→ · · ·—which is stuck in a loop of reductions to itself

4 P. Lopes et al.

Type reduction T → T

R-Seq1
Skip;T → T

R-Seq2
T → V T ̸= T1;T2

T ;U → V ;U

R-Assoc
(T ;U);V → T ; (U ;V)

R-µ

µk T → T (µk T)

R-β

(λα : κ.T)U → T [U/α]

R-TAppL
T → U

TV → UV

R-D;

Dual (T ;U) → DualT ;DualU
R-DSkip
Dual Skip → Skip

R-DWait
Dual End? → End!

R-DClose
Dual End! → End?

R-D?
Dual (?T) → !T

R-D!
Dual (!T) → ?T

R-D&
Dual (&{li : Ti}) → ⊕{li : Dual(Ti)}

R-D⊕
Dual (⊕{li : Ti}) → &{li : Dual(Ti)}

R-DCtx
T → U T ̸= T1;T2

DualT → DualU

R-DDVar
Dual (Dual (α T 1 . . . Tm)) → α T 1 . . . Tm

Fig. 2. Type reduction.

Type formation ∆ ⊢ T : κ

K-Const
∆ ⊢ ι : κι

K-Var
α : κ ∈ ∆

∆ ⊢ α : κ

K-TAbs
∆+ α : κ ⊢ T : κ′

∆ ⊢ λα : κ.T : κ ⇒ κ′

K-TApp
∆ ⊢ T : κ ⇒ κ′ ∆ ⊢ U : κ T U norm

∆ ⊢ T U : κ′

Fig. 3. Type formation.

via the application of rule R-β—and U = µs(λα : s.α;Skip) → (λα : s.α;Skip)U →
U ;Skip →2 U ;Skip;Skip → · · ·—which successively applies rules R-µ, R-β in
combination with R-Seq2, resulting in the unending addition of a trailing Skip.

Finally, we introduce well-formed types. We use ∆ ⊢ T : κ to denote that T
is a well-formed type with kind κ under the kinding context ∆, a map from type
variables to kinds. The kinds of constants can be found in Fig. 1. A variable α
has kind κ if α : κ ∈ ∆. An abstraction λα : κ.T has kind κ ⇒ κ′ if T is well-
formed. Note that ∆+ α : κ in rule K-TAbs represents updating the kind of the
type variable α to a new kind κ in the context ∆ if α : κ′ ∈ ∆ for some κ′, or
storing the kind of α in the context ∆ if otherwise. Finally, rule K-TApp states
that an application T U is well-formed if T and U are types and T U normalises,
that is, T U norm. In Section 3 we prove decidability of type formation, imposing
a restriction to kind ∗ for recursive types, also adopted by Poças et al. [8].

Integrating Type Operators into the FreeST Programming Language 5

Pre-kinding ∆ ⊢pre T : κ

PK-Const
∆ ⊢pre ι : κι

PK-Var
α : κ ∈ ∆

∆ ⊢pre α : κ

PK-TAbs
∆+ α : κ ⊢pre T : κ′

∆ ⊢pre λα : κ.T : κ ⇒ κ′

PK-TApp
∆ ⊢pre T : κ ⇒ κ′ ∆ ⊢pre U : κ

∆ ⊢pre T U : κ′

Fig. 4. Pre-kinding.

PK-Var

κ = κ′′ ⇒ κ′

α : κ ⊢pre α : κ′′ ⇒ κ′

PK-Var

⊥ (κ ̸= κ′′)

α : κ ⊢pre α : κ′′

α : κ ⊢pre αα : κ′ PK-TApp

⊢pre λα : κ.αα : κ ⇒ κ′ PK-TAbs

...

⊢pre λα : κ.αα : κ

⊢pre (λα : κ.αα)(λα : κ.αα) : κ′ PK-TApp

Fig. 5. Example of an unsuccessful derivation for a pre-kind goal.

Type equivalence allows us to check whether two types, even if syntactically
different, correspond to the same protocol. It is expected that two types that are
alpha-congruent are equivalent, like for example λα : κ.α and λβ : κ.β. However,
the task of checking if two types are equivalent may involve substitutions on-the-
fly as one crosses along the types. We will avoid this by performing a renaming
operation once on both types, right at the beginning of the type equivalence
checking process. We follow the notion of renaming in [8].

3 Deciding Type Formation

The rules for type formation in Fig. 3 involve determining if an application type
TU normalises. Poças et al. [8] propose a two-step solution to this problem. The
first stage is the introduction of the concept of pre-kinding. We denote this as
∆ ⊢pre T : κ, that is, T is pre-kinded with kind κ under the kinding context
∆. The rules for pre-kinding are in Fig. 4. They differ from the rules for type
formation in that, in rule PK-TApp, there is no verification of the normalisation
of TU . Pre-kinding excludes some (but not all) types that do not normalise, as
is the case of (λα : κ.αα)(λα : κ.αα) in Fig. 5.

For a type which is pre-kinded, termination of T norm is guaranteed. Some
recursive types are problematic for normalisation, as the application of reduction
might not decrease their size. For example, the type µs (λα : s.α;Skip) is pre-
kinded but successive reduction steps—via R-µ and R-β—keep adding ;Skip to
the tail of the type so we must conclude that it does not normalise. When
dealing with normalisation, we separate the treatment of recursive types from
the remaining types. In particular, we divide the reduction rules in two groups:
−→µ refers to reductions that use the R-µ rule and −→β;D refers to reductions

6 P. Lopes et al.

that never invoke the R-µ rule. Thus, → = −→β;D ∪ −→µ. We may now lift this
notion to normalisation, denoted by T ⇓β;D U and T ⇓µ U respectively.

In order to check if a type T is well-formed, we first determine if ⊢pre T : κ
for some κ. If T fails to be pre-kinded, it is not kinded either. Otherwise, we
check whether ⊢ T : κ, which involves determining if the application types
within T normalise. The approach to determine if a type normalises seeks infinite
reduction sequences. In the case of recursive types, such sequences would have
a finite number of β-reductions between two µ-reductions. T = T0 ⇓β;D T ′

0 −→µ

T1 ⇓β;D T ′
1 −→µ T2 ⇓β;D T ′

2 −→µ · · ·. If T ′
i does not reduce by any µ-reduction,

we can conclude that T normalises. Otherwise, since µ∗U is restricted to a base
kind ∗, it must reduce by one of following cases.

T ′
i = µ∗ U −→µ U (µ∗ U) (R-µ)

T ′
i = (µ∗ U);V −→µ (U (µ∗ U));V (R-Seq2)

T ′
i = Dual (µ∗ U) −→µ Dual (U (µ∗ U)) (R-DCtx)

T ′
i = (Dual (µ∗ U));V −→µ (Dual (U (µ∗ U)));V (R-Seq2+ R-DCtx)

We can easily notice that expression µ∗U reappears after the µ-reduction, indi-
cating potential infinite sequences. We can detect these by tracking occurrences
of µ∗U and halting if a repetition is found.

4 Deciding Type Equivalence

Following Poças et al. [8], the problem of checking whether two (renamed) types
are equivalent is reduced to translating types into grammars and checking bisim-
ilarity. A grammar in Greibach normal form [3] is a tuple (T ,N , γ,R), where:

– T is a finite set of terminal symbols, a, b, c;
– N is a finite set of non-terminal symbols, X,Y , Z;
– γ ∈ N ∗ is the starting word;
– R ⊆ N × T ×N ∗ is a finite set of production rules.

A production rule in R is written as X
a−→ δ. Grammars in GNF are simple

when, for every non-terminal symbol X and every terminal symbol a, there is
at most one production rule X

a−→ δ [7].
The function word(T), described in Fig. 6, translates types to words of non-

terminal symbols. If a type T is in weak head normal form, the construction of
word(T) updates the set of productions of T , according to one of the cases found
in word′. If T is not in weak head normal form and normalises to Skip, word(T)
returns the empty word; otherwise, if there exists a type U ̸= Skip such that
T normalises to U , word(U) = Zδ and Y a fresh new terminal, then for each

production of Z of the form Z
a−→ γ, Y has a production of the form Y

a−→ γδ.
The application of the word function to a type T terminates producing a simple
grammar. This is only possible because our well-formed types normalise, and all
of its subterms normalise as well. Furthermore, we keep track of already visited

Integrating Type Operators into the FreeST Programming Language 7

word(T)

word(T) =


word′(T) T whnf

ε T ⇓ Skip

Y ,R := R∪ {Y a−→ γδ | Z a−→ γ} T ⇓ U ̸= Skip,word(U) = Zδ

word′(α T1. . .Tm) = Y ,R := R∪ {Y α0−→ ε, Y
αj−→ word(Tj)⊥}

word′(Skip) = ε

word′(End♯) = Y ,R := R∪ {Y
End♯−→ ⊥}

word′(λα : κ.T) = Y ,R := R∪ {Y λα : κ−→ word(T)}

word′(ι) = Y ,R := R∪ {Y ι−→ ε} where ι ̸= Skip,End♯

word′(ι T1 · · ·Tm) = Y ,R := R∪ {Y
ιj−→ word(Tj)} where ι = →,⊙{li}, LliM

word′(♯T) = Y ,R := R∪ {Y ♯1−→ word(T)⊥, Y
♯2−→ ε}

word′(∃∀κT) = Y ,R := R∪ {Y ∃∀κ−→ word(T)⊥}

word′(; T) = Y ,R := R∪ {Y ;1−→ word(T)}
word′(T ;U) = word(T)word(U)

word′(Dual (α T1. . .Tm)) = Y ,R := R∪ {Y Dual1−→ word(α T1. . .Tm), Y
Dual2−→ ε}

Y is a fresh non-terminal symbol in all cases,
ϵ is the empty word,
⊥ is a non-terminal symbol with no productions.

Fig. 6. Function word(T).

types which enable reusing non-terminal symbols, which is crucial for dealing
with recursive types.

We check whether two types are equivalent by translating the (renamed)
types to a simple grammar, and then checking their bisimilarity, i.e., if word(T) ≈
word(U). The algorithm used to check bisimilarity of simple grammars is in [2].

Consider the type T0 = λβ : t.µ α : s.&{Leaf : Skip,Node : α; ?β; α};Wait de-
scribed in Section 1. We will demonstrate how the construction of word(T0)
terminates generating a simple grammar. Since T0 is in weak head normal
form, word(T0) returns a fresh symbol, which we call X0. We also add to the

set of productions the production X0
λβ : t−→ word(T1), where T1 is the type

µα : s.&{Leaf : Skip,Node : α; ?β;α};Wait.

Now T1 is not in weak head normal form, so we must normalise it in order to
obtain T2 such that T1 ⇓ T2. Then, word(T1) returns a fresh non-terminal which
we call X1. To obtain the productions of T1, we need to compute word(T2), that
returns a fresh symbol X2. Since T2 = &{Leaf : Skip,Node : T1; ?β;T1};Wait we
need to compute word(T2) = word(T3) word(Wait). We have that word(Wait) =

8 P. Lopes et al.

X4 and X4
Wait−→ ⊥ but we still need to compute word(T3). This computation

results in a fresh non-terminal X3 with productions X3
&1−→ word(Skip) and

X3
&2−→ word(T1; ?β;T1). Therefore, the transitions for X2 are X2

&1−→ X4 and

X2
&2−→ X3X4.
At last, we must compute word(T1; ?β;T1), which is a fresh symbol X5,

because this type is not in weak head normal form. This type normalises to
T2; ?β;T1, since T1 ⇓ T2, therefore the productions of X5 are the concatenation
of word(T2) word(?β) word(T1). At this point, we know that word(T2) = X2 and
word(T1) = X1. Thus, we just need to compute word(?β), which is a fresh sym-

bol X6 with productions X6
?1−→ word(β)⊥ and X6

?2−→ ε. Finally, word(β) is a

fresh symbolX7 with a productionX7
β−→ ε. This means that word(T2; ?β;T1) =

X2X6X1, which we write as X5
&1−→ X4X6X1 and X5

&2−→ X3X4X6X1.
Putting everything together, we obtain the following simple grammar:

X0
λβ : t−→ X1 X1

&1−→ X4 X1
&2−→ X3X4 X2

&1−→ X4

X2
&2−→ X3X4 X3

&1−→ ε X3
&2−→ X5 X4

Wait−→ ⊥

X5
&1−→ X4X6X1 X5

&2−→ X3X4X6X1 X6
?1−→ X7⊥ X6

?2−→ ε X7
β−→ ε

5 Implementation and Validation

Implementation consists on eight modules written in Haskell with a total of 675
LoC, as described in Table 1.

The current FreeST compiler features an algorithm for checking the bisimi-
larity of simple grammars, which we use for testing. The testing process takes a
suite of randomly generated types—a small subset of FreeST’s types, based on
the syntax presented in Fig. 1—leveraging the Quickcheck library [5] to ensure
these types have specific properties. Formal proofs regarding decidability of type
formation and equivalence can be found elsewhere [8].

An arbitrary type generator is defined using the Arbitrary typeclass, employ-
ing the frequency function to generate type operators with specific probabilities.
Variables are selected from a predefined range, abstractions are created by gen-
erating a variable, a kind, and a sub-type, and applications are formed by recur-
sively generating two sub-types. The sized function is used to control the size of
the generated types, ensuring manageable recursion depth. For better statistics
we ensure proper distribution of type constructors. The list of properties can be
found in Table 2. A total of 200.000 tests were made for each property.

Data was collected on a machine equipped with an Apple M3 Pro and 18GB
of RAM, and tested with Haskell’s version 9.6.3.

While randomly generated types facilitate a robust analysis, certain proper-
ties, such as the type-formation preservation property and bisimilarity of simple
grammars, prove challenging to test comprehensively. The difficulty arises from

Integrating Type Operators into the FreeST Programming Language 9

Module name LoC Description

Syntax 118 Defines the Type data constructor as
well as the higher-order kind system,
based on Fig. 1.

Substitution 50 Implements capture-avoiding substitu-
tion on types.

Normalisation 80 Reduces types to weak head normal
form, i.e., until no further reduction is
possible.

TypeFormation 58 Implements the type checking algo-
rithm.

Rename 30 Renames bound variables in a type by
the smallest possible variable available,
i.e., the first which is not free in the
type.

WeakHeadNormalForm 86 Checks whether a type is in weak head
normal form.

Grammar 74 Defines the Grammar data constructor,
based on the definition found in Sec-
tion 4.

TypeToGrammar 179 Implements the function word, that con-
verts types into simple grammars.

Table 1. Haskell modules.

Property Tests
passed

Tests dis-
carded

If T whnf then T ↛ 200.000 24.643

If T → U then not(T whnf) 200.000 1.671.940

If ⊢ T : κ and T → U then ⊢ U : κ 90 2.000.000

If ⊢ T : κ and T → U then word(T) ∼ word(U) 90 2.000.000

Table 2. Properties tested with Quickcheck.

the simplicity of our generator and the inherent low probability that randomly
generated test cases yield types that are both well-formed and reduce. Therefore,
most of the tests cases do not satisfy the precondition ⊢ T : κ and T → U ,
and Quickcheck ends up discarding 2.000.000 tests for the last two properties.
To achieve better results, more complex generators, tailored to specific prop-
erties, would be required. Such generators are often challenging to design and
implement.

10 P. Lopes et al.

6 Conclusion

To summarize, we investigated the integration of Fµ∗;
ω with context-free session

types into the functional programming language FreeST. Context-free session
types enhance the expressiveness and adaptability of communication protocols
in programming languages, surpassing the limitations of regular session types.

Our research tackled the significant challenges posed by type equivalence
algorithms within this advanced type system. We emphasized the importance
of handling recursive types separately to ensure the termination of normalisa-
tion. By refining reduction rules and employing a pre-kinding approach, type
formation is decidable.

By reducing the problem to the bisimilarity of simple grammars, a robust
solution for type equivalence checking is met, facilitating the implementation of
advanced type systems in real-world programming languages.

Acknowledgements. Support for this research was provided by the Fundação
para a Ciência e a Tecnologia through project SafeSessions ref. PTDC/CCI-
COM/6453/2020, and by the LASIGE Research Unit ref. UIDB/00408/2020
and UIDP/00408/2020.

References

1. Almeida, B., Mordido, A., Thiemann, P., Vasconcelos, V.T.: Polymorphic lambda
calculus with context-free session types. Inf. Comput. 289(Part), 104948 (2022).
https://doi.org/10.1016/J.IC.2022.104948

2. Almeida, B., Mordido, A., Vasconcelos, V.T.: Deciding the bisimilarity of context-
free session types. In: TACAS. LNCS, vol. 12079, pp. 39–56. Springer (2020). https:
//doi.org/10.1007/978-3-030-45237-7 3

3. Autebert, J., Boasson, L., Gabarró, J.: Context-free grammars in Greibach normal
forms. Bull. EATCS 24, 44–47 (1984)

4. Cai, Y., Giarrusso, P.G., Ostermann, K.: System F-omega with equirecursive types
for datatype-generic programming. In: POPL. pp. 30–43. ACM (2016). https://doi.
org/10.1145/2837614.2837660

5. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of Haskell
programs. In: ICFP. pp. 268–279. ACM (2000). https://doi.org/10.1145/351240.
351266

6. Gay, S.J., Thiemann, P., Vasconcelos, V.T.: Duality of session types: The final cut.
In: PLACES. EPTCS, vol. 314, pp. 23–33 (2020). https://doi.org/10.4204/EPTCS.
314.3

7. Korenjak, A.J., Hopcroft, J.E.: Simple deterministic languages. In: 7th Annual Sym-
posium on Switching and Automata Theory. pp. 36–46. IEEE Computer Society
(1966). https://doi.org/10.1109/SWAT.1966.22

8. Poças, D., Costa, D., Mordido, A., Vasconcelos, V.T.: System fµ ømega
with context-free session types. In: ESOP. LNCS, vol. 13990, pp. 392–420.
Springer (2023). https://doi.org/10.1007/978-3-031-30044-8 15, https://doi.org/10.
1007/978-3-031-30044-8 15

https://doi.org/10.1016/J.IC.2022.104948
https://doi.org/10.1016/J.IC.2022.104948
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15

Integrating Type Operators into the FreeST Programming Language 11

9. Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium,
Proceedings Colloque sur la Programmation. LNCS, vol. 19, pp. 408–423. Springer
(1974). https://doi.org/10.1007/3-540-06859-7 148

https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148

	Integrating Type Operators into the FreeST Programming Language

