
Linear Calculi for Programming Languages: a
comparison approach

Ana Jorge Almeida, Sandra Alves, and Mário Florido

LIACC, Departamento de Ciência de Computadores
Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre, s/n, Porto, Portugal

Abstract. Here we define and implement a compilation between two
linear systems, a linear calculus from David Walker (2005) and Linear
Haskell (2017) and show that, although based on different semantics,
there exists an equivalence between both systems. There are some diffi-
culties to this though, given that one calculus uses a small-step semantics
and the other a big-step semantics and Linear Haskell uses let-statements
in addition to the terms that can be directly translated from each sys-
tem. We will make clear those differences and show how to deal with
them in the compilation process.

1 Introduction

A linear function consumes its argument exactly once and a linear type sys-
tem gives a static correctness guarantee that a function is linear. Linear types
originate in a theory of linear logic [6], where truth is a finite resource that can
be used once, but not duplicated or discarded.

Several linear calculi were defined before as foundational calculi for program-
ming languages [1–5,7,9–11]. In this paper we focus on two of these calculi and
compare them with respect to their operational semantics: the linear calculus
presented by David Walker in the 2005 chapter Substructural Type Systems of
the book Advanced Topics in Programming Languages [11] and the more hype
2017 Haskell extension Linear Haskell [3].

In [11], David Walker presents a linear type system that ensures that we
can safely deallocate an object after being used. He also defines an operational
semantics that evaluates terms in an abstract machine with an explicit store
using a context-based, small-step semantics.

More recently, Linear Haskell, an extension to Haskell that uses linear types
[3], is build upon a big-step operational semantics with laziness in the style of
Launchbury semantics [8], where terms are transformed before evaluation [3].

Here we define a compilation between these two systems and with this show
that, although based on different semantics (small-step and big-step) there exists
an equivalence between both systems. As an example, consider the following term
of Linear Haskell: letω x : α →ω α = λωy : α.y in < x, x >1 where subscripts ω
means unrestricted use and 1 linear use. Our compilation translates the previous
term to (lin < un λy : un α. y, un λy : un α. y >) in the David Walker



2 Ana Jorge Almeida, Sandra Alves, and Mário Florido

calculus, where lin means linear use and un means unrestricted use. Below are
the evaluations of each term, first in Linear Haskell:

({x :ω= λωy : α.y};< x, x >1) ⇓ ({x :ω= λωy : α.y};< x, x >1)

(∅; letω x : α →ω α = λωy : α.y in < x, x >1) ⇓ ({x :ω= λωy : α.y};< x, x >1)

and, in the David Walker calculus:

(∅; lin < un λy : un α. y,un λy : un α. y >)

→ (a 7→ lin < un λy : un α. y,un λy : un α. y >; a)

There are intrinsic difficulties on the definition of a correct compilation, given
that one calculus uses a small-step semantics and the other a big-step seman-
tics and Linear Haskell uses let-statements in addition to the terms which can
be directly translated from each system. We will make clear those differences
and how to deal with them in the compilation process. All definitions were im-
plemented in Haskell. The implementation and an extended version with auxil-
iary lemmas and full proofs are available in https://github.com/anathegrey/
Linear-Calculi-Translation/.

2 Relation between Linear Haskell and David Walker
calculus

Our main goal is to define a translation to show that the David Walker
calculus [11], W, and Linear Haskell [3], L, are equivalent, which means that
we want to show they both yield the same results at the end of computation,
despite their differences in syntax. Therefore, we define translations between
terms, types, qualifiers and heaps (environments). Below are the definitions.

Definition 1. Translation of terms from W to L.
xL = x
(q < t1, t2 >)L =< t1L, t2L >qL

(split t1 as x, y in t2)L = split t1L as x, y in t2L
(q λx : q′ P. t)L = λq′Lx : PL. tL
(t1 t2)L = t1L t2L

Definition 2. Translation of terms from L to W.
xW = x
(< t1, t2 >π)W = πW < t1W , t2W >
(split t1 as x, y in t2)W = split t1W as x, y in t2W
(λπx : P. t)W = πW λx : πW PW . tW
(t1 t2)W = t1W t2W
(letπ a1 : A1 = e1, . . . , an : An = en in t)W = tW [a1 7→ e1W ] . . . [an 7→ enW]

Definition 3. Translation of S:
(a = q t, S)L = a :qL P = tL, SL, where Γ ′ ⊢ tL : P

Definition 4. Translation of Γ : (a :π A = t, Γ )W = a = πW tW , ΓW

Definition 5. Translation of types.

https://github.com/anathegrey/Linear-Calculi-Translation/
https://github.com/anathegrey/Linear-Calculi-Translation/


Linear Calculi for Programming Languages: a comparison approach 3

Translation of types from W to L:
q (q′ P1 → q′′ P2)L = P1L →q′L P2L
q (T1 ∗ T2) = T1L ∗qL T2L

Translation of types from L to W:
(T1 →π T2)W = πW T1W → πW T2W
(T1 ∗π T2)W = πW (T1W ∗ T2W)

Definition 6. Translation of qualifiers.
linL = 1
unL = ω

Definition 7. Translation of multiplicities.
1W = lin
ωW = un

Let → stand for reduction in the David Walker linear calculus [11] and ⇓ stand
for reduction in Linear Haskell [3].

Example 1. Let us consider the following term in the linear calculus presented
in [11]:

t ≡ (lin λx : lin (lin α → lin α). x) (lin λy : lin α. y)

and

(∅; (lin λx : lin (lin α → lin α). x) (lin λy : lin α. y))

→ ({a1 7→ lin λx : lin (lin α → lin α). x}; a1 (lin λy : lin α. y))

→ (∅; lin λy : lin α. y)

Now we will translate t to Linear Haskell:

tL = ((lin λx : lin (lin α → lin α). x) (lin λy : lin α. y))L

= (lin λx : lin (lin α → lin α). x)L (lin λy : lin α. y)L

= (λ1x : α →1 α. x) (λ1y : α. y)

Before evaluating, we need to transform the term using the Launchbury syntax
[3].

(tL)
∗ = let1 a2 : α →1 α = (λ1y : α. y)∗ in (λ1x : α →1 α. x)∗ a2

= let1 a2 : α →1 α = λ1y : α. y in (λ1x : α →1 α. x) a2

and, let Γ = {a2 :1 α →1 α = λ1y : α. y},

(Γ ;λ1x : α →1 α. x) ⇓ (Γ ;λ1x : α →1 α. x)

(∅;λ1y : α. y) ⇓ (∅;λ1y : α. y)

(Γ ; a2) ⇓ (∅;λ1y : α. y)

(Γ ; (λ1x : α →1 α. x) a2) ⇓ (∅;λ1y : α. y)

(∅; let1 a2 : α →1 α = λ1y : α. y in (λ1x : α →1 α. x) a2) ⇓ (∅;λ1y : α. y)

To compare both systems we need to define, for each language, a function
called deref, which will go through the resulting term taking the environment
into account and inlines the store/heap contents in the term until it has no



4 Ana Jorge Almeida, Sandra Alves, and Mário Florido

free occurrences of variables. Now we are able to compare both terms using the
function deref :

deref∅(lin λy : lin α. y) = let (y, ∅) = deref∅(y)

in (lin λy : lin α. y; ∅)

deref∅(λ1y : α. y) = let (y, ∅) = deref∅(y)

in (λ1y : α. y; ∅)

where (lin λy : lin α. y)L = λ1y : α. y and (λ1y : α. y)W = lin λy : lin α. y.

Finally, we proceed to the main results of our paper. In Theorem 1, we
prove by induction on the length k of the reduction sequence, that if we make
a computation in the David Walker calculus then, if we translate the initial
pair to Linear Haskell and reduce it, the derefΓ yields the same result in both
computations. By proving this theorem, we are able to show that we can simulate
David Walker calculus in Linear Haskell.

In Theorem 2, we will prove the opposite simulation, also by induction on
the length of the derivation tree, where we are able to show that if we make
a computation in Linear Haskell then, if we translate the initial pair to the
David Walker calculus and reduce it, the derefS yields the same result in both
computations.

Theorem 1.
If (S;MW) →k (S′;NW) then

(S∗
L; (MW)∗L) ⇓ (Γ ;NL) and derefΓ (NL) = derefS′∗

L
((NW)∗L)

Theorem 2.
If (Γ ;M∗

L) ⇓ (Γ ′;NL) then

(ΓW ; (ML)W) ↠ (S;NW) and derefS(NW) = derefΓ ′W ((NL)W)

3 Conclusions

In this paper, we defined two compilations that relate two different linear
calculi, the David Walker calculus [11], a linear type system which uses a small-
step operational semantics, and Linear Haskell [3], an extension to Haskell, that
uses a big-step semantics. We were able to show that there exists an equivalence
between both systems, despite several differences in syntax and the kind of op-
erational semantics (small-step and big-step) used, confirming the robustness of
linear type theory because the choice of semantics does not fundamentally alter
the behaviour of programs.

Acknowledgements This work was partially financially supported by the Artificial In-
telligence and Computer Science Laboratory, LIACC, funded by national funds through
the FCT/MCTES (PIDDAC) - UIDB/00027/2020.



Linear Calculi for Programming Languages: a comparison approach 5

References

1. Alves, S., Fernández, M., Florido, M., Mackie, I.: Linearity and recursion in a
typed lambda-calculus. In: Proceedings of the 13th International ACM Conference
on Principles and Practice of Declarative Programming (PPDP) (2011)

2. Alves, S., Fernández, M., Florido, M., Mackie, I.: Linearity: a roadmap. Journal of
Logic and Computation 24(3), 513–529 (2014)

3. Bernardy, J.P., Boespflug, M., Newton, R.R., Peyton Jones, S., Spiwack, A.: Linear
haskell: practical linearity in a higher-order polymorphic language. Proc. of the
44th ACM Symposium on Principles of Programming Languages 2(POPL) (2017)

4. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26(3), 367–423 (2016)

5. Coppola, P., Lago, U.D., Rocca, S.R.D.: Elementary affine logic and the call-by-
value lambda calculus. In: Typed Lambda Calculi and Applications, (TLCA). Lec-
ture Notes in Computer Science, vol. 3461, pp. 131–145. Springer (2005)

6. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)
7. Hughes, J., Orchard, D.: Program synthesis from graded types. In: Proceedings

of the 33rd European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 14576, pp. 83–112. Springer (2024)

8. Launchbury, J.: A natural semantics for lazy evaluation. In: Proceedings of the
20th ACM Symposium on Principles of Programming Languages (POPL) (1993)

9. Mackie, I.: Lilac: A functional programming language based on linear logic. Journal
of Functional Programming 4(4), 395–433 (1994)

10. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theoretical Computer Science 228(1-
2), 175–210 (1999)

11. Walker, D.: Substructural type systems. In: Pierce, B.C. (ed.) Advanced Topics in
Types and Programming Languages. pp. 3–44. The MIT Press (2005)


	Linear Calculi for Programming Languages: a comparison approach

